Computes the Bertin Classification Index for a contingency table of any dimensions.

BCI(x)

Arguments

x

A data matrix, table or array.

Details

The BCI is the Bertin Classification Criterion (BCC) normalized by the BCC value under independence.

Value

The criterion value.

See also

Examples

#for an unoptimized matrix we take the minimum of BCI(M) and BCI(M[,12:1]) M <-arsim(1000, c(12,12), 3) min(BCI(M), BCI(M[,12:1]))
#> [1] 0.8308147
#an strongly related alternative (for two-way data) kendalls(M)
#> [1] 0.1694221
M2 <- optile(M, iter = 100) BCI(M2)
#> [1] 0.2248789
#> [1] 0.7054944
M3 <-arsim(100000, c(12,13,15), 4,noise=0.2,shuffle=FALSE) BCI(M3)
#> [1] 0.2919551