Find the grooves of a bullet land
Usage
cc_locate_grooves(
ccdata,
method = "rollapply",
smoothfactor = 15,
adjust = 10,
groove_cutoff = 400,
mean_left = NULL,
mean_right = NULL,
mean_window = 100,
return_plot = F,
...
)
Arguments
- ccdata
data frame of the crosscut. Data frame needs location x and measured values as
value
. If multiple crosscuts are to be considered, include a variable y and use as a key.- method
method to use for identifying grooves. One of "quadratic", "rollapply", "middle", "logisticlegacy", "lassobasic", "lassofull", "bcp". Defaults to "rollapply"
- smoothfactor
The smoothing window to use - XXX the smoothing window seems to depend on the resolution at which the data has been collected.
- adjust
positive number to adjust the grooves - XXX should be expressed in microns rather than an index (not used for method = "middle")
- groove_cutoff
The index at which a groove cannot exist past - XXX this parameter should be expressed in microns rather than as an index to be able to properly deal with different resolutions
- mean_left
If provided, the location of the average left groove
- mean_right
If provided, the location of the average right groove
- mean_window
The window around the means to use
- return_plot
Return plot of grooves?
- ...
parameters passed on to specific groove location methods
Examples
if (FALSE) { # \dontrun{
# Set the data up to be read in, cleaned, etc.
library(bulletxtrctr)
library(x3ptools)
example_data <- bullet_pipeline(
location = list(Bullet1 = c(hamby252demo$bullet1[3])),
stop_at_step = "crosscut",
x3p_clean = function(x) x %>%
x3p_scale_unit(scale_by=10^6) %>%
rotate_x3p(angle = -90) %>%
y_flip_x3p()
)
cc_locate_grooves(example_data$ccdata[[1]],
method = "rollapply",
adjust = 30, return_plot = T
)
cc_locate_grooves(example_data$ccdata[[1]],
method = "middle",
adjust = 30, return_plot = T
)
cc_locate_grooves(example_data$ccdata[[1]],
method = "quadratic",
adjust = 30, return_plot = T
)
} # }